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Abstract

With the rapid development of 3D digital shape information, content-based 3D model retrieval and classification has become an
important research area. This paper presents a novel 3D model retrieval and classification algorithm. For feature representation, a
method combining a distance histogram and moment invariants is proposed to improve the retrieval performance. The major advantage
of using a distance histogram is its invariance to the transforms of scaling, translation and rotation. Based on the premise that two similar
objects should have high mutual information, the querying of 3D data should convey a great deal of information on the shape of the two
objects, and so we propose a mutual information distance measurement to perform the similarity comparison of 3D objects. The pro-
posed algorithm is tested with a 3D model retrieval and classification prototype, and the experimental evaluation demonstrates satisfac-
tory retrieval results and classification accuracy.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The development of modeling tools, such as 3D scan-
ners and 3D graphics hardware (or hardware-accelerated
3D graphics), has enabled access to three-dimensional
materials of high quality both on the Internet and in
the domain-specific databases. 3D models now play an
important role in many applications, such as mechanical
manufacture, games, biochemistry, art, and virtual real-
ity. How to find the desired models quickly and accu-
rately from 3D model databases and how to classify
the 3D models have become practical problems.
Researchers in many well-known institutions and univer-
sities all over the world are dedicating themselves to this
research field, which has led to the development of
experimental search engines for 3D shapes [1,2], such

as the 3D model search engine at Princeton University,
and the 3D model retrieval system at the National Tai-
wan University. Several feature representations have been
explored: Zhang produced a local index for volume index
[3]; Funkhouser described objects using a reflective sym-
metry descriptor [4] or a spherical harmonics descriptor;
and Hilaga proposed the method based on a Reeb graph
[5]. Many other methods [6,7] could also be included in
this list. As for the pattern recognition problem, 2D
image classification and recognition has been widely con-
sidered, while less work has been done in the case of 3D
models [8]. For classification, the statistical learning algo-
rithm, support vector machine (SVM), is used to solve
some practical problems [9].

In this study, we present new techniques for content-
based 3D model retrieval and classification, in which the
combination of a distance histogram and moment invari-
ants is used to improve the retrieval and classification per-
formance. SVM is employed to solve the 3D model
classification problem.

1002-0071/$ - see front matter � 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.

doi:10.1016/j.pnsc.2008.06.025

* Corresponding author. Tel.: +86 10 88256595; fax: +86 10 88259429.
E-mail address: luk@gucas.ac.cn (K. Lü).
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2. A similarity measurement of a 3D model

2.1. Distance histogram for 3D model representation

A distance histogram measures the distances between
fixed points and random points on a surface. Similar to
the centroid-radii modeling of 2D shapes, we use the cen-
troid of the model’s boundary as the fixed point. After
obtaining all the distances, we first need to divide them
by the maximum distance, so as to normalize the distances.
On completion of this process, the value of all the normal-
ized distances will be in the range of [0, 1] and so the
method is invariant to scale. Then we separate the range
of the distances into several ranges, say R ranges, and com-
pute the number of distances in each range.

The distance histogram can be considered to be a global
descriptor for a 3D model. Rather than being attached to
the details of the 3D model, distance histograms give more
importance to its general aspects. The main idea is to focus
on the statistical distributions of a shape function measur-
ing geometrical properties of the 3D model. Despite its
simplicity, the method has several properties that are desir-
able for similarity matching: the distance histogram has
transformation invariance properties, random sampling
ensures that the distance histogram is robust to noise,
and construction of the distance histogram for a database
of 3D models is generally fast and efficient. Furthermore,
the distance histogram is independent of its presentation,
topology, or the application domain of the sampled 3D
models.

2.2. 3D moment invariants

Moments are a traditional mathematical tool for mea-
suring the spatial mass distribution of a shape. In the case
of binary digital datasets, this is the distribution of pixels
(in 2D) or voxels (in 3D) of a shape. It is possible to com-
pute moment invariants of a 3D point distribution which
are invariant to translation and rotation, in the same man-
ner as 2D moment invariants.

Let q(x,y,z) be a local continuous density function. For
example, this can be 1 inside voxels belonging to an object,
and 0 in free space. Let ð�x; �y;�zÞ be the centroid of the
object. The use of centroid in the moment calculation given
below gives translation invariance. The 3D moments of
order n = p + q + r, n e N for a 3D density function
q(x,y,z) are defined as [10]:

qðx; y; zÞ ¼
1 : Object

0 : Background

(

ð1Þ

Mpqr ¼
Z 1

�1

Z 1

�1

Z 1

�1
ðx� �xÞpðy � �yÞqðz

� �zÞrqðx; y; zÞdxdydz ð2Þ

The set of moments {Mpqr} has a fundamentally impor-
tant property: it uniquely determines, and is uniquely
determined by the object. The moments defined above con-
tain both geometrical and internal information of the pat-
terns. Approximating this formula to a digital voxel space
is straightforward by using summation instead of
integration.

In the absence of prior knowledge, 3D models have an
arbitrary scale, orientation and position in the 3D space.
Before we get the moment signature, we need to align the
coordinates. Here, we consider the problem for a 2D image
case and then extend the method to a 3D model.

The procedure for aligning the coordinates consists of
the following three steps:

Step 1. Let lkr denote the central moments of order
(k + r) in the 2D case. The covariance matrix of a given
image is defined as:

C ¼
l20 l11

l11 l02

� �

ð3Þ

Step 2. Find the eigenvalues and eigenvectors of C. Let
k1 and k2 be the eigenvalues of C; with e1 = [e1xe1y]T

being the eigenvector associated with k1, and
e2 = [e2xe2y]T associated with k2. Then we get the rota-
tion matrix E

E ¼
e1x e1y

e2x e2y

� �

ð4Þ

Step 3. Transform the coordinate system by translating
the origin to the image center and multiplying the coor-
dinates by matrix E. Thus, the new coordinates depend
on the eigenvectors of C. Let [x0y0]T denote the new
coordinates. Then

x0

y0

� �

¼ E
x� �x

y � �y

� �

ð5Þ

In the case of binary digital datasets, this is the distribu-
tion of pixels in 2D for images and voxels in 3D for digital
geometry objects. It is possible to compute moment invari-
ants of the 3D point distribution which are invariant to
translation and rotation, in the same manner as the 2D
moment invariants. We thus apply the above procedure
to the 3D case. Then the covariance matrix becomes

S ¼

M200 M110 M101

M110 M020 M011

M101 M011 M002
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6
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7

7
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ð6Þ

We should transform all the objects so that their centers are
at (0, 0,0) and any dependence on translation or spatial po-
sition is eliminated. In order to make the final result un-
ique, we further make sure that the third-order moments,
M300 and M030, are positive after the transformation. The
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above algorithm for pose estimation is fairly simple and
efficient.

3. 3D model retrieval principle and multi-class support vector

machine

3.1. 3D model retrieval principle

The choice of distance function can drastically influence
the retrieval performance. We employ two distance mea-
sures, mutual information for the distance histogram and
Euclidean distance for moments. Mutual information is
an effective similarity measure for comparing images. The
mutual information between two variables is a concept
with roots in information theory and essentially measures
the amount of information that one variable contains
about the other [10]. As a similarity measure, it has many
advantages. It assumes a statistical relationship that can
be captured by analyzing the image joint entropy. Mutual
information is closely related to joint entropy. Let X and
Y be two n-bin histograms. Then the mutual information
between X and Y can be defined as:

IðX ; Y Þ ¼ HðX Þ þ HðY Þ � HðX ; Y Þ ð7Þ
where H(X) is the Shannon entropy of histogram X com-
puted from the probability distribution of the bin counts,
and H(X,Y) is their joint entropy. Mutual information
can be defined as the joint probability distribution of the
histogram:

IðX ; Y Þ ¼
X

x;y

pX ;Y ðx; yÞ log
pX ;Y ðx; yÞ

pX ðxÞpY ðyÞ
ð8Þ

To estimate the joint probability pX,Y(x,y) for histo-
grams X and Y, the most straightforward approach is
to compute the co-occurrence matrix of the correspond-
ing bin count values. The entries of the co-occurrence
matrix record the number of times the bin counts in X

having a value x coincide with the corresponding bin
counts in Y having a value y. This is similar to the co-
occurrence matrix used in texture characterization. The
marginal distribution of pX(x) and pY(y) can be obtained
by summation over the rows or columns of the co-occur-
rence matrix. Here, we use the following information dis-
tance measure (MID):

MIDðX ; Y Þ ¼ HðX ; Y Þ � IðX ; Y Þ ð9Þ
MID satisfies the axioms for a distance

MIDðX ;X Þ ¼ 0

MIDðX ; Y Þ ¼ MIDðY ;X Þ
MIDðX ; Y Þ þMIDðY ; ZÞP MIDðX ; ZÞ

Euclidean distance is used to compare the similarity
between moment features. Comparison can be done by cal-
culating the distances of all the features and then by
weighting the distances by the total distance.

3.2. Multi-class support vector machine

SVM was originally designed for binary classification.
How to extend it for effective multi-class classification is
still an on-going research issue. Currently, there are two
main approaches for a multi-class SVM [11]. Different pos-
sibilities include modifying the design of the SVM to incor-
porate the multi-class learning directly in the quadratic
solving algorithm. The schemes which have been proposed
for solving the multi-class problem are as follows:

(i) Using k one-to-rest classifiers.
(ii) Using k(k � 1)/2 pairwise classifiers with one of the

voting schemes listed below:
Majority voting
Pairwise coupling.

(iii) Extending the formulation of the SVM to support the
k-class problem.

Construct the decision function by considering all the
classes at once.

Construct a decision function for each class by only con-
sidering the training data points belonging to that particu-
lar class.

Here, we choose one-to-one matching to perform the
classification as it is more suitable for practical use. The
one-to-one method constructs k(k � 1)/2 classifiers where
each one contains training data from two classes. Given l

training data, (x1,y1), . . ., (xl,yl), where xi e Rn, i = 1, . . .,
l and yi e {1, . . .,k} is the class of xi, and the training data
xi are mapped to a higher dimensional space by the func-
tion / and c is the penalty parameter, and c

Pl
j¼1n

i
j is a pen-

alty term that can reduce the number of training errors.
There are different methods for doing the test after all

k(k � 1)/2 classifiers are constructed. The following voting
strategy is used: if the sign of ((wij)T/(x) + bij) denotes that
x is in the ith class, then the vote for the ith class is incre-
mented by one. Otherwise, the jth vote is incremented. The
new prediction is that x is in the class with the largest vote.
The voting approach described above is also called the max
wins strategy. In the case that two classes have identical
votes, we simply select the one with the smaller index. Prac-
tically we solve the dual problem whose number of vari-
ables is the same as the number of data in the two
classes. The Gaussian RBF kernel is used which has been
proved to provide good generalization capabilities.

The good performance is due to the superior generaliza-
tion ability of SVM in high dimensional spaces. The dimen-
sions of the feature vector affect the classification accuracy.
When the feature vector dimension is 10, it makes the per-
formance of classification worse. According to the error
similarity, we choose the dimension of the feature vector
to be 56: 40 for the histogram, and 16 for the moments
(two and three order). The differences in classification gran-
ularity have an impact on the classification results. The
database should not be too coarse or too fine. The 3D
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models are partitioned equally into the training and test
sets.

4. Experiments and analyses

The method described above has been implemented
using Visual C++ and tested on a 3D model database con-
taining about 2500 models, some of which are models of
the same object with different polygon tessellations. We
manually arrange the database into different classes. The
tests are run on a Windows-PC with SQL Server 2000.
As for the query interface, we adopted the query-by-exam-
ple approach. In the database, an entry stores a 3D model
along with a pre-calculated feature vector for the model.
Retrieval results are shown in Figs. 1 and 2. We carry
out several experiments to find the number of random
points that give perfect retrieval, where good retrieval per-
formance can be determined by choosing 5000 random
points.

We select about 1000 models for the retrieval and classi-
fication performance evaluation. Retrieval performance of
the method is evaluated using the normalized recall (NR)
measure [12] instead of precision vs recall, because NR
reflects the position in which the set of relevant images
appears in the retrieval sequence.

NR is formulated as AVRR/IAVRR, where AVRR is
the average rank of all relevant, displayed images, and
IAVRR is the ideal average rank which is maximum when
all the relevant images are retrieved as shown in Fig. 2.
Normally, NR is larger than 1. However, for ideal retrieval,
NR is equal to 1. We get NR = 1.19 when combining
moments and a distance histogram, where ANRS = 1.32
for the histogram and ANRS = 1.43 for the moments. It
can be seen that the distance histogram represents the dis-
tribution of the global features, while moment signatures
represent the global features directly. The combination of
the two features achieves better retrieval performance.

From the training sample, the first example (x1,y1) is
removed, and the resulting sample is used for training,
leading to a classification rule. This classification rule is
tested on the removed example (x1,y1). This process is
repeated for all the training examples. The number of mis-
classifications divided by n is the leave-one-out estimate of
the generalization error. Table 1 shows the average error

rates of the classification (r ¼ 1=k, where k is the number
of classes and c = 1000).

The results show that the combination provides better
results than using a single descriptor, because the method
combines the shape features and the shape distribution fea-
tures of a 3D model.

5. Conclusions

We have proposed a new algorithm for determining the
content-based similarity of 3D models, given as a 3D repre-
sentation. Two main issues are considered to measure the
similarity of two models. The first is the selection of a dis-
tance function for the similarity measurement. The second
is the multi-class SVM classification. We have developed a
prototype of a 3D model retrieval and classification system.
There are, however, still many open research issues that need
to be solved, which are listed as follows:

(i) Many models look very similar from a visual appear-
ance, but they belong to different classes. Therefore,
special attention should be paid to the semantic issues
when making a classification.

(ii) It is very difficult for one method to be applied to all
3D models. Therefore, it is expected that better retrie-
val performance will be achieved for larger databases
and in application areas such as molecular biology,
mechanical industry, and game characters. On the
other hand, we should determine how well our
method can discriminate classes of 3D models in a
larger and more diverse database.

(iii) Performance evaluation criterion and a standard test
dataset are needed. Any technique is advanced by its
domain’s evaluation criterion. Good metrics will lead
the technique in the right direction, while bad ones

Fig. 1. Models sorted by their similarity to the query object.

Fig. 2. Part matching retrieval result from 3D database.

Table 1
Average error rates of the classification (%).

Method 2-class 4-class 6-class

Distance histogram 19 22 23
Moment 20 24 29
Distance histogram and moment 13 15 19

498 K. Lü et al. / Progress in Natural Science 19 (2009) 495–499



may mislead the research effort. An equally impor-
tant task is to establish a well-balanced large-scale
test dataset.
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